
Sommaire
Introduction to Kernelization
Date de création :
17.11.2011Auteur(s) :
Fedor v. FOMINPrésentation
Informations pratiques
Droits réservés à l'éditeur et aux auteurs.
Description de la ressource
Résumé
Preprocessing or data reductions means reducing the input to something simpler by solving an easy part of the input and this is the type of algorithms used in almost every application. In spite of wide practical applications of preprocessing, a systematic theoretical study of such algorithms remains elusive. The framework of parameterized complexity can be used as an approach to analyse preprocessing algorithms. Input to parameterized algorithms include a parameter (in addition to the input) which is likely to be small, and this resulted in a study of preprocessing algorithms that reduce the size of the input to a pure function of the parameter (independent of the input size). Such type of preprocessing algorithms are called kernelization algorithms. In the talk we give an overview of some classical and new techniques in the design of kernelization algorithms.
"Domaine(s)" et indice(s) Dewey
- Algorithmes (518.1)
Domaine(s)
- Analyse numérique
- Programmation : Algorithmique, langages, conception objet, programmes
- Analyse numérique appliquée, calcul numérique, mathématiques numériques
Intervenants, édition et diffusion
Intervenants
Édition
- Région PACA
- INRIA (Institut national de recherche en informatique et automatique)
Diffusion
Document(s) annexe(s)
Fiche technique
- LOMv1.0
- LOMFRv1.0
- Voir la fiche XML